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Abstract: For a simple finite connected graph G, let diam(G) and dG(u, v) denote
the diameter of G and distance between u and v in G, respectively. A radio labeling
of a graph G is a mapping f : V (G) → {0, 1, 2,...} such that |f(u) − f(v)| ≥
diam(G)+1− dG(u, v) holds for every pair of distinct vertices u, v of G. The radio
number rn(G) of G is the smallest number k such that G has radio labeling f with
max{f(v) : v ∈ V (G)} = k. Bantva et al. gave a lower bound for the radio number
of trees in [1, Lemma 3.1] and, a necessary and sufficient condition to achieve this
lower bound in [1, Theorem 3.2]. Denote the lower bound for the radio number of
trees given in [1, Lemma 3.1] by lb(T ). A tree T is called a lower bound tree for
the radio number if rn(T ) = lb(T ). In this paper, we construct some large lower
bound trees for the radio number using known lower bound trees.
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1. Introduction
The channel assignment problem is the task of allocating channels (non-negative

integers) to each TV or radio transmitter such that the interference constraints
are satisfied and channels use is kept to a minimum. In 1980, Hale looked for a
mathematical solution of this channel assignment problem using a graph model in
[10]. In a graph model, a set of vertices represents transmitters; two vertices are
adjacent if the corresponding transmitters are very close and distance two apart if
corresponding transmitters are close. In 1988, Roberts in a private communication
with Griggs proposed that close transmitters must receive different channels and
very close transmitters must receive channels that are at least two apart. Motivated
by this, Griggs and Yeh [8] introduced the following L(2, 1)-labeling problem: An
L(2, 1)-labeling of a graph G = (V (G), E(G)) is a function f from the vertex set
V (G) to the set of non-negative integers such that |f(u)− f(v)| ≥ 2 if d(u, v) = 1
and |f(u)−f(v)| ≥ 1 if d(u, v) = 2. The span of f is defined as max{|f(u)−f(v)| :
u, v ∈ V (G)}, and the minimum span taken over all L(2, 1)-labelings of G is called
the λ-number of G, denoted by λ(G). This graph labeling is also known as distance
two labeling as the conditions imposed on vertices are within two distance. The
readers are requested to refer [3] and [15] for different directions of work and recent
results on L(2, 1)-labeling.

The distance conditions on vertices were later extended to include pairs of ver-
tices at distances larger than two to the maximum possible distance in graph - the
diameter of a graph. Denote by diam(G) the diameter of G, that is, the maximum
distance among all pairs of vertices in G. Chartrand et al. [5] introduced the con-
cept of radio labeling as follows.

Definition 1.1. A radio labeling of a graph G is a mapping f : V (G)→ {0, 1, 2, . . .}
such that for every pair of distinct vertices u, v of G,

dG(u, v) + |f(u)− f(v)| ≥ diam(G) + 1. (1)

The span of f is defined as span(f) = max{f(v) : v ∈ V (G)}. The radio number
of G is defined as

rn(G) := min{span(f) : f is a radio labeling of G}

with minimum taken over all radio labelings f of G. A radio labeling f of G is
optimal if span(f) = rn(G).

A radio labeling problem is a min-max type optimization problem. Note that
any optimal radio labeling must assign 0 to some vertex and also in the case
diam(G) = 2, we have rn(G) = λ(G). Observe that any radio labeling should
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assign different labels to distinct vertices. In fact, a radio labeling induces a linear
order u0, u1, . . . , un−1 (n = |V (G)|) of vertices of G such that 0 = f(u0) < f(u1) <
... < f(un−1) = span(f).

A radio labeling is considered in one of the most tough graph labeling problems.
The radio number of graphs is known for very few graph families. The summary of
results on the radio number of graphs can be found in a survey article [4]. Recently,
the radio number of trees remain the focus of many researchers. The upper bound
for the radio number of paths was given by Chartrand et al. in [6] while the exact
radio number for paths is determined by Liu and Zhu in [13]. In [12], Liu gave a
lower bound for the radio number of trees and presented a class of trees namely
spiders achieving this lower bound. In [11], Li et al. determined the radio number
of complete m-ary trees. In [9], Halász and Tuza determined the radio number
of level-wise regular trees. In [1], Bantva et al. gave a lower bound for the radio
number of trees which is same as the one given by Liu in [12] but using slightly
different notations. They gave a necessary and sufficient condition to achieve this
lower bound and presented three classes of trees namely banana trees, firecrackers
trees and a special class of trees achieving this lower bound. Recently, Chavez et
al. also discussed the radio number of trees and gave some methods to find large
lower bound trees in [7].

Denote the lower bound for the radio number of trees given in [1, Lemma 3.1] by
lb(T ). A tree T is called lower bound tree for the radio number if rn(T ) = lb(T ). In
this paper, our purpose is to give some large lower bound trees for the radio number
using known lower bound trees. We construct three families of trees, namely Twk

,
TSk

and TDk
(see Section 3 for definition and detail) obtained by taking graph

operations on a given tree T or a family of trees Ti, 1 ≤ i ≤ k whose radio number
is equal to the lower bound given in [1, Lemma 3.1]. The radio numbers are related
with following relations:

(1) rn(Twk
) =

k∑
i=1

(rn(Ti) + (ni − 1)(d− di))− k + 1.

(2) rn(TSk
) = k(rn(T ) + n0(d− d0 − 2) + d0) + 1.

(3) rn(TDk
) = 2k(rn(T ) + n0(d− d0 − 3) + d0) + d.

where diam(Tx) = d, |T | = n0, diam(T ) = d0, |Ti| = ni and diam(Ti) = di for
1 ≤ i ≤ k and x ∈ {wk, Sk, Dk}.
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2. Preliminaries
In this section, we define necessary terms and also present some known results

which will be used in the present work. We follow [14] for standard graph theoretic
terms and notations. The distance dG(u, v) between two vertices u and v is the
length of a shortest path joining u and v in G. The diameter of a graph G is
max{dG(u, v) : u, v ∈ V (G)}. A tree T is a connected graph that contains no
cycle. For a tree T , denote vertex set and edge set by V (T ) and E(T ). A k-
star Sk is a tree consisting of k-leaves and another vertex joined to all leaves by
edges. A path Pm on m vertices is a tree in which every vertex has degree at
most two. The complete m-ary tree of height h, denoted by Th,m, is a rooted tree
such that each vertex other than leaves (degree-one vertices) has m children and
all leaves are distance h apart from the root. The level-wise regular tree is a tree
rooted at one vertex w or two adjacent vertices w and w′, in which all vertices
with the minimum distance i from w or w′ have the same degree mi for 0 ≤ i ≤ h,
where h is the height of T . Denote these trees by T 1 = T 1

m0,m1,...,mh−1
with one

root and T 2 = T 2
m0,m1,...,mh−1

with two roots, respectively. The (m, k)-banana tree,
denoted by B(m, k), is a tree obtained by joining one leaf of each of m copies of
a (k − 1)-star to a single root (which is distinct from all vertices in the k-stars).
The (m, k)-firecrackers tree, denoted by F (m, k), is the tree obtained by taking m
copies of a (k − 1)-star and identifying a leaf of each of them to a vertex of Pm.
A tree is called a caterpillar if the removal of all its degree-one vertices results in
a path, called the spine. Denote by C(m, k) the caterpillar in which the spine has
length m− 3 and all vertices on the spine have degree k.

In [12], the weight of T from v ∈ V (T ) is defined as wT (v) =
∑

u∈V (T ) dT (u, v)

and the weight of T as w(T ) = min{wT (v) : v ∈ V (T )}. A vertex v ∈ V (T ) is a
weight center of T if wT (v) = w(T ). Denote the set of weight center(s) by W (T ).
In [12], author viewed a tree T rooted at a weight center w and defined the level
function on V (T ) from fix root w by Lw(u) = dT (w, u) for any u ∈ V (T ). For
any two vertices u and v, if u is on the (w, v)-path (w is a weight center), then
u is an ancestor of v, and v is a descendent of u. If u is a neighbour of a weight
center w then the subtree induced by u together with all its descendants is called a
branch at u. Two branches are called different if they are induced by two different
vertices adjacent to the same weight center w. Using these terms and notations,
Liu presented the following result in [12].

Theorem 2.1. [12] Let T be an n-vertex tree with diameter d. Then

rn(T ) ≥ (n− 1)(d+ 1) + 1− 2w(T ). (2)

Moreover, the equality holds if and only if for every weight center w∗, there exists
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a radio labeling f with 0 = f(u0) < f(u1) < . . . < f(un−1), where all the following
hold (for all 0 ≤ i ≤ n− 2);

(1) ui and ui+1 are in different branches (unless one of them is w∗);

(2) {u0, un−1} = {w∗, v}, where v is some vertex with Lw∗(v) = 1;

(3) f(ui+1) = f(ui) + d+ 1− Lw∗(ui)− Lw∗(ui+1).

In [1], Bantva et al. gave a lower for the radio number of trees which is same as
one given in [12] but using different notations and also gave necessary and sufficient
condition to achieve the lower bound. They viewed a tree T rooted at W (T ): if
W (T ) = {w}, then T is rooted at w; if W (T ) = {w,w′} (where w and w′ are
adjacent), then T is rooted at w and w′ in the sense that both w and w′ are at
level 0. They called two branches are different if they are at two vertices adjacent
to the same weight center (which is same as in [12]), and opposite if they are at
two vertices adjacent to different weight centers. The later case occurs only when
T has two weight centers. They defined the level of u in T as

LT (u) := min{dT (u, x) : x ∈ W (T )}, u ∈ V (T ) (3)

and the total level of T as

L(T ) :=
∑

u∈V (T )

LT (u). (4)

Define

ε(T ) =

{
1, if T has only one weight center,
0, if T has two (adjacent) weight centers.

Using these terms and notation, Bantva et al. gave a lower bound for the radio
number of trees in [1] as follows.

Theorem 2.2. Let T be a tree with order n and diameter d ≥ 2. Denote ε = ε(T ).
Then

rn(T ) ≥ (n− 1)(d+ ε)− 2L(T ) + ε. (5)

The readers should note that both lower bounds in (2) and (5) are identical
because when W (T ) = {w} then L(T ) = w(T ) and when W (T ) = {w,w′} then
L(T ) = w(T )+n/2. Hence in our further discussion, we denote the identical right-
hand side of (2) and (5) by lb(T ) for a given tree T . The next result is a necessary
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and sufficient condition for rn(T ) = lb(T ) given in [1].

Theorem 2.3. [1] Let T be a tree with order n and diameter d ≥ 2. Denote
ε = ε(T ). Then

rn(T ) = (n− 1)(d+ ε)− 2L(T ) + ε (6)

holds if and only if there exists a linear order u0, u1, . . . , un−1 of the vertices of T
such that

(a) u0 = w and un−1 ∈ N(w) when W (T ) = {w}, and {u0, un−1} = {w,w′} when
W (T ) = {w,w′};

(b) the distance dT (ui, uj) between ui and uj in T satisfies (0 ≤ i < j ≤ n− 1)

dT (ui, uj) ≥
j−1∑
t=i

(LT (ut) + LT (ut+1))− (j − i)(d+ ε) + (d+ 1). (7)

Moreover, under this condition the mapping f defined by

f(u0) = 0 (8)

f(ui+1) = f(ui)− LT (ui+1)− LT (ui) + (d+ ε), 0 ≤ i ≤ n− 2 (9)

is an optimal radio labeling of T .
A tree T for which rn(T ) is given by (6) is called a lower bound tree. We denote

the set of all lower bound trees by Tlb. Hence, Tlb = {T : rn(T ) = lb(T )}. Our
aim is to add more and more trees T in the set Tlb. Some known trees which are
members as well as non-members of this set are as follows (see Table 1 also). In
[13], Liu and Zhu determined the radio number of paths. It is easy to check that
P2k are lower bound paths while P2k+1 are not lower bound paths. In [11], Li et
al. gave the radio number of complete m-ary trees (m ≥ 3) which are lower bound
trees. However, the complete binary trees whose radio number is also determined
in [11] are not lower bound trees. In [9], Halász and Tuza determined the exact
radio number of complete level-wise regular trees with all non-leaf vertices of degree
more than two which are lower bound trees. In [1], Bantva et al. determined the
radio number of banana trees and firecrackers trees which both are lower bound
trees. The authors also determined the radio number of C(m, k) in [1] and it is
easy to show that C(m, k) are lower bound trees when m is even and non-lower
bound trees when m is odd. It is interesting and challenging task to find lower
bound trees of more complex structure. Note that even an addition or a deletion of
a vertex or an edge make lower bound tree to non-lower bound tree and vice-versa.
For example, it is known that a path P2k+1 (k ≥ 1) is not a lower bound tree but
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deletion of one leaf vertex from a path P2k+1 makes a path P2k which is a lower
bound tree. Similarly, the converse procedure of above for a path P2k makes a
lower bound tree to non lower bound tree.

Further recall that a tree represents a network of transmitters and often such
a network of transmitters is expanded then it is expected that the resultant graph
is to be a tree due to simple structure properties of trees. Moreover, the network
operator additionally wants that the large tree obtained by expansion of network is
to be a lower bound tree as the lower bound tree minimize the spectrum of channels.
This motivated us to find more lower bound trees of complex structure. Usually
trees of more complex structure are constructed using some graph operation on
given tree T or a family of trees Ti, i = 1, 2, ..., k. Hence, it raises the following
question.

Question 2.4. How to find large lower bound tree using a known lower bound tree
T or a family of lower bound trees Ti, i = 1, 2, . . . , k ?

Since the question is unlikely to answer completely, the task remains to present
examples and constructions to find lower bound trees to answer the above question.
In the next section, we give three constructions to find large lower bound trees from
given lower bound tree T or a family of lower bound trees Ti, i = 1, 2, . . . , k.

3. Main results

We consider a tree T of order n0 and diameter d0 with weight center w0. In case
of a family of trees, we consider trees Ti (1 ≤ i ≤ k) of order ni and diameter di
with single weight center wi. If Tx is any tree obtained by taking graph operation
on T or a family of trees Ti then we take |Tx| = n and diam(Tx) = d. Let k ≥ 2 be
an integer. A k-star Sk is a tree consisting of k leaves and another vertex joined to
all leaves by edges. A k-double star Dk is a tree which is formed by joining k edges
to each of the two vertices of K2. It is known that both k-star Sk and k-double star
Dk are lower bound trees. Let ∗1 be the graph operation which identifies weight
centers wi of trees Ti, 1 ≤ i ≤ k with a single vertex w. Denote the tree obtained
by taking graph operation ∗1 on trees Ti, 1 ≤ i ≤ k by Twk

. Note that the weight

center of Twk
is w and |Twk

| =
∑k

i=1 ni−k+1. Let T and T ′ be two trees such that
W (T ) = {w0} and T ′ has m leaves. Let ∗2 be the graph operation which identifies
a weight center w0 of a copy of tree T at each leaf of T ′ denoted by TT ′ . Let TSk

and
TDk

denote the tree obtained by taking graph operation ∗2 of a tree T with k-star
Sk and k-double star Dk, respectively. Note that |W (TSk

)| = 1 and |W (TDk
)| = 2.

Moreover, if w is the vertex adjacent to all leaves in Sk and w1, w2 are two adjacent
vertices adjacent to all leaves in Dk then W (TSk

) = {w} and W (TDk
) = {w1, w2}.

It is clear that |TSk
| = kn0 + 1 and |TDk

| = 2(kn0 + 1).
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Observation 3.1. Let Twk
, TSk

and TDk
be defined as above then the following

hold.

(a) |Twk
| =

∑k
i=1 ni − k + 1, |TSk

| = kn0 + 1 and |TDk
| = 2(kn0 + 1).

(b) diam(Twk
) ≥ diam(Ti) (i = 1, . . . , k), diam(TSk

) ≥ diam(T )+2 and diam(TDk
) ≥

diam(T ) + 3.

(c) For any u ∈ V (Twk
), LTwk

(u) = LTi
(u).

(d) For any u ∈ V (TSk
), LTSk

(u) = LT (u) + 1.

(e) For any u ∈ V (TDk
), LTDk

(u) = LT (u) + 1.

Theorem 3.2.1 If Ti ∈ Tlb, 1 ≤ i ≤ k then Twk
∈ Tlb and

rn(Twk
) =

k∑
i=1

(rn(Ti) + (ni − 1)(d− di))− k + 1. (10)

Proof. We prove that rn(Twk
) = lb(Twk

) and for this purpose it is enough to give
a linear order u0, u1, ..., un−1 of vertices of Twk

which satisfies the conditions of
Theorem 2.3.

Since each Ti ∈ Tlb (1 ≤ i ≤ k), the radio number of each Ti, i = 1, 2, . . . , k is
given by

rn(Ti) = (ni − 1)(di + 1)− 2L(Ti) + 1. (11)

Moreover, by Theorem 2.3, there exists a linear order ui
0, u

i
1, ..., u

i
ni−1 of V (Ti),

1 ≤ i ≤ k which satisfies the conditions (a) ui
0 = wi and ui

ni−1 ∈ N(wi) and (b)

dTi
(ui

l, u
i
m) ≥

∑m−1
t=l (LTi

(ut) + LTi
(ut+1))− (l−m)(di + 1) + (di + 1), 0 ≤ l < m ≤

ni − 1. The radio labeling defined by (8)-(9) is an optimal radio labeling whose
span is the right-hand side of (11).

Now we define a linear order u0, u1, ..., un−1 of vertices of Twk
as follows: Let u0

= w and for all other ut, 1 ≤ t ≤ n− 1 we use the following Algorithm 1.
Then un−1 ∈ N(w) and for each 0 ≤ i ≤ n − 1, ui and ui+1 are in different

branches.

Claim. The linear order {u0, u1, ..., un−1} satisfies (7).
1We come to know that the similar type of result is also appeared in [7] without use of Theorem

2.3, however this result was published earlier than [7] in [2] without proof (as an extended abstract
form) and thus we included it here.
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Algorithm 1 A linear order u⃗ := {u0, u1, . . . , un−1} of V (Twk
).

Input: A list of linear orders ui
0, u

i
1, . . . , u

i
ni−1 of V (Ti), i = 1, 2, . . . , k and w.

1: u0 ← w
2: n0 ← 0
3: for 1 ≤ i ≤ k do
4: for 1 ≤ j ≤ ni − 1 do

5: t← j +
i∑

z=1

nz−1

6: ut ← ui
j

7: end for
8: end for
9: return u⃗ := {u0, u1, . . . , un−1}

Output: A linear order u⃗ = {u0, u1, . . . , un−1}.

Let ul, um be two arbitrary vertices. Without loss of generality, we assume
l −m ≥ 2. We denote the right-hand side of (7) by Si,j for simplicity. If ul, um ∈
V (Ti) then ul = ui

x and um = ui
y for some i. Note that dTwk

(ul, um) = dT (u
i
x, u

i
y) and

ut ∈ V (Ti) for l ≤ t ≤ m. Hence, we have Si,j =
∑m−1

t=l (LTwk
(ut) + LTwk

(ut+1)) −
(l−m)(d+1)+(d+1) ≤

∑m−1
t=l (LTwk

(ut)+LTwk
(ut+1))−(l−m)(di+1)+(di+1) =∑m−1

t=l (LTi
(ui

t) + LTi
(ui

t+1)) − (l −m − 1)(di + 1) ≤ dTi
(ui

x, u
i
y) = dTwk

(ul, um). If

ul ∈ V (Ti) and um ∈ V (Tj) then ul = ui
x and um = uj

y. Note that dTwk
(ul, um) =

LTwk
(ul)+LTwk

(um) as ul and um are in different branches. Let α = max{LTwk
(ua) :

l < a < m} then 2α ≤ d and hence Si,j =
∑m−1

t=l (LTwk
(ut) + LTwk

(ut+1)) − (l −
m)(d+1)+(d+1) = LTwk

(ul)+LTwk
(um)+2

∑m−1
t=l+1 LTwk

(ut)−(l−m−1)(d+1) ≤
LTwk

(ul)+LTwk
(um)−(l−m−1)(d+1−2α) ≤ LTwk

(ul)+LTwk
(um) = dTwk

(ul, um).
Thus a linear order u0, u1, ..., un−1 of vertices of Twk

satisfies the conditions of
Theorem 2.3. The radio number for Twk

is given by the right-hand side of (6) for
which n = n1 + n2 + ... + nk − k + 1, L(Twk

) = L(T1) + L(T2) + ... + L(Tk) and
using (11) we have

rn(Twk
) = (n− 1)(d+ 1)− 2L(Twk

) + 1

=

(
k∑

t=1

ni − k

)
(d+ 1)− 2

(
k∑

t=1

L(Ti)

)
+ 1

=
k∑

t=1

(ni − 1)(d+ 1)− 2

(
k∑

t=1

L(Ti)

)
+ 1
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=
k∑

t=1

(ni − 1)(d− di + di + 1)− 2

(
k∑

t=1

L(Ti)

)
+ 1

=
k∑

i=1

rn(Ti) +
k∑

i=1

(ni − 1)(d− di)− k + 1.

Theorem 3.3. If T ∈ Tlb then TSk
∈ Tlb, where k ≥ 3 and

rn(TSk
) = k(rn(T ) + n0(d− d0 − 2) + d0) + 1. (12)

Proof. We prove rn(TSk
) = lb(TSk

) and for this purpose, it is enough to show
that there exists a linear order u0, u1, ..., un−1 of vertices of TSk

which satisfies the
conditions of Theorem 2.3.

We denote an internal vertex of k-star by w and leaf vertices adjacent to w by
xs, s = 1, 2, . . . , k. It is clear that w is a weight center of TSk

.
Since T ∈ Tlb, the radio number of T is given by

rn(T ) = (n0 − 1)(d0 + 1)− 2L(T ) + 1. (13)

Algorithm 2 A linear order u⃗ := {u0, u1, . . . , un−1} of V (TSk
).

Input: A list of linear orders us
0, u

s
1, . . . , u

s
n0−1 of sth copy of V (T ) and a list

xs, 1 ≤ s ≤ k with w.

1: u0 ← w
2: for 1 ≤ t ≤ n0 − 1 do
3: for 1 ≤ s ≤ k do
4: i← (t− 1)k + s
5: ui ← xs

t

6: end for
7: end for
8: for 1 ≤ s ≤ k do
9: i← n− k − 1 + s
10: ui ← xs

11: end for
12: return u⃗ := {u0, u1, . . . , un−1}

Output: A linear order u⃗ = {u0, u1, . . . , un−1}.

Moreover, by Theorem 2.3, let xs
t , 0 ≤ t ≤ n0 − 1 be a linear order of vertices

of each copy of T attached to xs, 1 ≤ s ≤ k which satisfies the following conditions
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(a) xs
0 = w and xs

n0−1 ∈ N(w), 1 ≤ s ≤ k, (b) dT (x
s
l , x

s
m) ≥

∑m−1
t=l (LT (x

s
t) +

LT (x
s
t+1))− (l −m)(d0 + 1) + (d0 + 1). The radio labeling defined by (8)-(9) is an

optimal radio labeling whose span is the right-hand side of (13).
We define a linear order u0, u1, ..., un−1 of vertices of TSk

as follows: Let u0 =
w and for all other ui, 1 ≤ i ≤ n− 1 we use the following Algorithm 2.

Then u0 = w and un−1 ∈ N(w) and for all 1 ≤ i ≤ n − 2, ui and ui+1 are in
different branches.
Claim. The linear order {u0, u1, ..., un−1} satisfies (7).

Let ui and uj, 0 ≤ i < j ≤ n−1 be two arbitrary vertices. Note that d ≥ d0+2
and LTSk

(v) = LT (v) + 1, for any v ∈ V (TSk
). We denote the right-hand side

of (7) by Si,j for simplicity. If ui, uj are in different branches then dTSk
(ui, uj) =

dT (ui, uj)+2. Hence, we have Si,j =
∑j−1

t=i (LTSk
(ut)+LTSk

(ut+1))− (j− i)(d+1)+

(d+1) ≤
∑j−1

t=i (LT (ut)+LT (ut+1)+2)− (j− i)(d0+3)+(d0+3) =
∑j−1

t=i (LT (ut)+
LT (ut+1))− (j − i)(d0 + 1) + (d0 + 1) + 2 ≤ dT (ui, uj) + 2 = dTSk

(ui, uj). If ui and
uj are in the same branch of TSk

then note that dTSk
(ui, uj) = dT (ui, uj) and j − i

= k(l − m), where k ≥ 3 and l − m ≥ 1. Let α = max{LTSk
(ut) : i ≤ t ≤ j}

then we have, Si,j =
∑j−1

t=i (LTSk
(ut) + LTSk

(ut+1)) − (j − i)(d + 1) + (d + 1) ≤
(k − 1)(l−m)(2α− d) +

∑m−1
t=l (LT (ut) + LT (ut+1))− (l−m)(d0 + 1) + (d0 + 1) +

2− (k − 1)(l −m) ≤ dT (ul, um) + 2− (k − 1)(l −m) ≤ dT (ul, um) = dTSk
(ui, uj).

Thus, in each case above a linear order u0, u1, ..., un−1 satisfies the conditions of
Theorem 2.3. The radio number for TSk

is given by the right-hand side of (6) for
which n = kn0 + 1, L(TSk

) = k(L(T ) + n0) and using (13) we have

rn(TSk
) = (n− 1)(d+ 1)− 2L(TSk

) + 1

= (kn0)(d+ 1)− 2k(L(T ) + n0) + 1

= k((n0 − 1)(d0 + 1)− 2L(T )) + kn0(d− d0 − 2) + k(d0 + 1) + 1

= k(rn(T )− 1) + kn0(d− d0 − 2) + k(d0 + 1) + 1

= k(rn(T ) + n0(d− d0 − 2) + d0) + 1.

Theorem 3.4. If T ∈ Tlb then TDk
∈ Tlb, where k ≥ 2 and

rn(TDk
) = 2k(rn(T ) + n0(d− d0 − 3) + d0) + d. (14)

Proof. We prove rn(TDk
) = lb(TDk

) and for this purpose, it is enough to show
that there exists a linear order u0, u1, ..., un−1 of vertices of TDk

which satisfies the
conditions of Theorem 2.3.

We denote two internal vertices of k-double star by w1 and w2 and leaf vertices
adjacent to w1 and w2 by xs, s = 2,4,...,2k and xs, s = 1,3,...,2k − 1 respectively.
It is clear that w1 and w2 are weight centers of TDk

.
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Since T ∈ Tlb, the radio number of T is given by

rn(T ) = (n0 − 1)(d0 + 1)− 2L(T ) + 1. (15)

Moreover, by Theorem 2.3, let xs
t , 0 ≤ t ≤ n0 − 1 be a linear order of vertices of

each copy of T attached to xs, 1 ≤ s ≤ 2k which satisfies the following conditions
(a) xs

0 = w and xs
n0−1 ∈ N(w), 1 ≤ s ≤ 2k, (b) dT (x

s
l , x

s
m) ≥

∑m−1
t=l (LT (x

s
t) +

LT (x
s
t+1))− (l −m)(d0 + 1) + (d0 + 1). The radio labeling defined by (8)-(9) is an

optimal radio labeling whose span is the right-hand side of (15).
We define a linear order u0, u1, ..., un−1 of vertices of TDk

as follows: Let u0 =
w1, un−1 = w2 and for all other ui, 1 ≤ i ≤ n− 2 we apply the following Algorithm
3.

Algorithm 3 A linear order u⃗ := {u0, u1, . . . , un−1} of V (TDk
).

Input: A list of linear orders us
0, u

s
1, . . . , u

s
n0−1 of sth copy of V (T ) and a list

xs, 1 ≤ s ≤ 2k with w1 and w2.

1: u0 ← w1

2: un−1 ← w2

3: for 1 ≤ t ≤ n0 − 1 do
4: for 1 ≤ s ≤ 2k do
5: i← (t− 1)2k + s
6: ui ← xs

t

7: end for
8: end for
9: for 1 ≤ s ≤ 2k do
10: i← n− 2k − 1 + s
11: ui ← xs

12: end for
13: return u⃗ := {u0, u1, . . . , un−1}

Output: A linear order u⃗ = {u0, u1, . . . , un−1}.

Then u0 = w1 and un−1 = w2 and for all 1 ≤ i ≤ n − 2, ui and ui+1 are in
opposite branches.
Claim. The linear order {u0, u1, ..., un−1} satisfies (7).

Let ui and uj, 0 ≤ i < j ≤ n−1 be two arbitrary vertices. Note that d ≥ d0+3
and LTDk

(v) = LT (v) + 1 for any v ∈ V (TDk
). We denote the right-hand side of

(7) by Si,j for simplicity. If ui and uj are in opposite branches then dTDk
(ui, uj) =

dT (ui, uj)+3. Hence, we have Si,j =
∑j−1

t=i (LTDk
(ut)+LTDk

(ut+1))−(j−i)d+d+1 ≤



Some Techniques to Find Large Lower Bound Trees for the Radio Number 201

∑j−1
t=i (LT (ut)+LT (ut+1)+2−(d0+3))+d0+4 =

∑j−1
t=i (LT (ut)+LT (ut+1)−(d0+1))+

(d0+1)+3 ≤ dT (ui, uj)+3 = dTDk
(ui, uj). If ui and uj are in different branches of

TDk
then dTDk

(ui, uj) = LTDk
(ui)+LTDk

(uj) and j− i ≥ 2. Let α = max{LTDk
(ut) :

i < t < j} then we have, Si,j =
∑j−1

t=i (LTDk
(ut)+LTDk

(ut+1))− (j− i)d+(d+1) =

LTDk
(ui)+LTDk

(uj)+2
∑j−1

t=i+1 LTDk
(ut)− (j− i− 1)d+1 ≤ LTDk

(ui)+LTDk
(uj)+

(j − i − 1)(2α − (d − 1)) − (j − i − 1) + 1 ≤ LTDk
(ui) + LTDk

(uj) = dTDk
(ui, uj).

If ui and uj are in the same branch of TDk
then note that dTDk

(ui, uj) = dT (ui, uj)
and j − i = 2k(l − m), where k ≥ 2 and l − m ≥ 1. Let α = max{LTDk

(ut) :

i ≤ t ≤ j} then we have, Si,j =
∑j−1

t=i (LTDk
(ut)+LTDk

(ut+1))− (j− i)d+(d+1) ≤
(2k− 1)(l−m)(2α− d) +

∑m−1
t=l (LT (ut) +LT (ut+1))− (l−m)(d0 +1)+ (d0 +1)+

3− (2k− 1)(l−m) ≤ dT (ul, um) + 3− (2k− 1)(l−m) ≤ dT (ul, um) = dTDk
(ui, uj).

Thus, in each case above a linear order u0, u1, ..., un−1 satisfies the conditions
of Theorem 2.3. The radio number for TDk

is given by the right-hand side of (6)
for which n = 2kn0 + 2, L(TDk

) = 2k(L(T ) + n0) and using (15) we have

rn(TDk
) = (n− 1)d− 2L(TDk

)

= (2kn0 + 1)d− 2(2kL(T ) + 2kn0)

= 2k((n0 − 1)(d0 + 1)− 2L(T )) + 2kn0(d− d0 − 3) + 2k(d0 + 1) + d

= 2k(rn(T )− 1) + 2kn0(d− d0 − 3) + 2k(d0 + 1) + d

= 2k(rn(T ) + n0(d− d0 − 3) + d0) + d.

Table 1: A list of lower bound trees

Sr. Tree T rn(T ) Reference

1 P2k 2k(k − 1) + 1 [13]

2 Th,m
mh+2+mh+1−2hm2+(2h−3)m+1

(m−1)2
[11]

3 T 1 (n− 1)(d+ 1) + 1−
h∑

i=1

(
im0

∏
0<j<i

(mj − 1)

)
[9]

4 T 2 (n− 1)d− 4
h∑

i=1

(
i

i−1∏
j=0

(mj − 1)

)
[9]

5 B(m, k) m(k + 6) + 1 [1]

6 F (m, k) (m2+ε)k
2

+ 5m− 3 [1]
7 C(2m, k) 2(m− 1)2(k − 1) + 2m− 1 [1]

In Table 1, a list of known lower bound trees with its radio number (which is
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useful for (10), (12) and (14)) is given. The readers may apply above described
techniques on the lower bound trees and construct the large lower bound trees for
the radio number. The procedure can be repeated on newly obtained lower bound
trees again to form the large lower bound trees for the radio number.

The readers may refer the following specific example for an illustration of the
constructions described in this work and the procedure used in the proofs of The-
orems 3.2 to 3.4.

Example 3.5. In Fig. 1, the lower bound tree Tw2 is formed using lower bound
trees T1 and T2 while TS3 and TD2 are formed by taking graph operations of the
tree T with S3 and D2.
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Figure 1: Optimal radio labeling for Tw2 , TS3 and TD2 .

4. Concluding Remarks
We gave three techniques to find large lower bound trees which is obtained by

taking graph operation on a known lower bound tree or a family of lower bound
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trees. The techniques can be repeated on newly obtained lower bound trees to
produce more large lower bound trees. We related the radio number of newly
obtained lower bound trees with given lower bound tree or a family of trees.
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